Tweets by @DanielRyan0777 Megacosm
A blog mainly about our world and our universe and the lenses we use to uncover their mysteries: science, reason, and imagination--with random music, thoughts, and poetry thrown in as well for good measure.
starstuffblog:

World’s first magnetic hose created
The creation could open up a wide field of applications, as happened with optical fibers The magnetic hose designed by the researchers consists of a ferromagnetic cylinder covered by a superconductor material, a surprisingly simple design given the complicated theoretical calculations and numerous lab tests it had to undergo. A 14-centimeter prototype was built, which transports the magnetic field from one extreme to the other with a efficiency of 400% in comparison to current methods used to transport these fields.
Even with the efficiency of the prototype, researchers theoretically demonstrated that the magnetic hose can be even more efficient if the ferromagnetic tube is covered with thin layers of alternating superconductor and ferromagnetic material.
The device designed by the researchers can be implemented at any scale, even at nanometre scale. Thus, a magnetic nanohose capable of individually controlling quantum systems could help to solve some of the current technological problems existing in quantum computing.
Magnetic Fields Guided by New Technology Magnetism is a basic element of today’s technology, such as in energy generating processes and in the storage of information in computers. And one of the essential processes in these technologies is the conduct and transfer of magnetic fields, either with the use of large transformers or in logic nanodevices.
Light, formed by magnetic and electric field waves, can be very effectively conducted through optical fibres. Nevertheless, “until now there was nothing similar with which to guide and transport static magnetic fields,” explains Àlvar Sánchez, ICREA Academia and leader of the research. “To guide these fields in electronic circuits or in current transformers, ferromagnetic materials such as iron alloys are used, but their intensity quickly drops with the distance and their application is limited.”
 IMAGE….This is a schematic representation of the magnetic hose. The magnetic field generated at the hose inlet is transmeted to the outlets. Credit: UAB
neurosciencestuff:

(Image caption: On these images, the cerebral activation detected by ultrasound imaging is shown in red. During odor presentation, specific areas are activated in the olfactory bulb but not in the piriform cortex. Credit: © Mickael Tanter / Hirac Gurden)
Ultrasound tracks odor representation in the brain
A new ultrasound imaging technique has provided the first ever in vivo visualization of activity in the piriform cortex of rats during odor perception. This deep-seated brain structure plays an important role in olfaction, and was inaccessible to functional imaging until now. This work also sheds new light on the still poorly known functioning of the olfactory system, and notably how information is processed in the brain. This study is the result of a collaboration between the team led by Mickael Tanter at the Institut Langevin (CNRS/INSERM/ESPCI ParisTech/UPMC/Université Paris Diderot) and that led by Hirac Gurden in the Laboratoire Imagerie et Modélisation en Neurobiologie et Cancérologie (CNRS/Université Paris-Sud/Université Paris Diderot). Their findings are published in NeuroImage.
How can the perception of the senses help represent the external environment? How, for example, does the brain process food-or perfume-related olfactory data? Although the organization of the olfactory system is well known - it is similar in organisms ranging from insects to mammals - its functioning remains unclear. To answer these questions, the scientists focused on the two brain structures that act as major olfactory relays: the olfactory bulb and the piriform cortex. In the rat, the olfactory bulb is located between the eyes, just behind the nasal bone. The piriform cortex, meanwhile, is deep-seated in the brain of rodents, which made it impossible to obtain any functional images in a living animal until now.
Yet the neurofunctional ultrasound imaging technique developed by Mickael Tanter’s team, called fUS(functional Ultrasound), allows the monitoring of neuronal activity in the piriform cortex. It is based on the transmission of ultrasonic plane waves into the brain tissue. After data processing, the echoes returned by the structures crossed by these waves can provide images with unequalled spatial and temporal resolution: 80 micrometers and a few tens of milliseconds. The contrast on these images is due to variations in the brain’s blood flow. Indeed, the activity of nerve cells requires an input of energy: it is therefore coupled to an influx of blood into the zone concerned. By recording volume variations in the blood vessels irrigating the different brain structures, it is there fore possible to determine the location of activated neurons.
Several imaging techniques, such as MRI, are already based on the link between blood volume and neuronal activity. But fUS offers advantages in terms of cost, ease of use and resolution. Furthermore, it provides easier access to the deepest structures that are often located several centimeters beneath the cranium.
The recordings performed by Hirac Gurden’s team using this technique made it possible to observe the spatial distribution of activity within the olfactory bulb. When an odor was perceived, blood volume increased in clearly defined areas: each odor thus corresponded to a specific pattern of activated neurons. In addition to these findings, and for the first time, the images revealed an absence of spatial distribution in the piriform cortex. At this level, two different odors triggered the same activation throughout the region.
The cellular mechanisms responsible for the disappearance of a spatial signature are not yet clearly defined, but these findings lead to the formulation of several hypotheses. The piriform cortex could be a structure that serves not only to process olfactory stimuli but rather to integrate and memorize different types of data. By making abstraction of the strict odor-induced patterns, it would be possible to make associations and achieve a global concept. For example, based on the perception of the hundreds of odorant molecules found in coffee, the piriform cortex would be able to recognize a single odor, that ofcoffee.
This work opens new perspectives for both imaging and neurobiology. The researchers will now be focusing on the effects of learning on cortical activity in order to elucidate its role and the specificities of the olfactory system.
jewsee-medicalstudent:

Love your muscles!
The love hormone oxytocin helps old mice regenerate muscle tissue as well as young mice do, (in picture, muscle proteins are stained in red, DNA in blue).
UC Berkeley researchers have discovered that the hormone - associated with maternal nurturing, social attachments, childbirth and sex - is indispensable for healthy muscle maintenance and repair, and that in mice it declines with age.
The new study, published in the journal Nature Communications, presents oxytocin as the latest treatment target for age-related muscle wasting, or sarcopenia. A few other biochemical factors in blood have been connected to aging and disease in recent years, but oxytocin is the first anti-aging molecule identified that is approved by the Food and Drug Administration for clinical use in humans, the researchers said.
Pitocin, a synthetic form of oxytocin, is already used to help with labor and to control bleeding after childbirth. Clinical trials of an oxytocin nasal spray are also underway to alleviate symptoms associated with mental disorders such as autism, schizophrenia and dementia. “Unfortunately, most of the molecules discovered so far to boost tissue regeneration are also associated with cancer, limiting their potential as treatments for humans,” said study principal investigator Irina Conboy, associate professor of bioengineering. “Our quest is to find a molecule that not only rejuvenates old muscle and other tissue, but that can do so sustainably long-term without increasing the risk of cancer.”
Conboy and her research team say that oxytocin, secreted into the blood by the brain’s pituitary gland, is a good candidate because it is a broad range hormone that reaches every organ, and it is not known to be associated with tumors or to interfere with the immune system.
(To read more). 
abcstarstuff:

NEXT-GENERATION DARK MATTER EXPERIMENTS GET THE GREEN LIGHT
Berkeley Lab to lead new underground project in hunt for dark matter.
Last week, the U.S. Department of Energy’s Office of Science and the National Science Foundation announced support for a suite of upcoming experiments to search for dark matter that will be many times more sensitive than those currently deployed.
These so-called Generation 2 Dark Matter Experiments include the LUX-Zeplin (LZ) experiment, an international collaboration formed in 2012, managed by DOE’s Lawrence Berkeley National Lab (Berkeley Lab) and to be located at the Sanford Underground Research Facility (SURF) in South Dakota. With the announcement, the DOE and NSF officially endorsed LZ and two other dark matter experiments.
"The great news is we’ve been given the go-ahead," says William Edwards, LZ project manager and engineer in Berkeley Lab Physics Division. "We’re looking forward to making what has been a proposal into a real, operational, first-rate experiment."
The LZ experiment was first proposed two years ago to search for and advance our understanding of dark matter, a mysterious substance that makes up roughly 27 percent of the universe. The experiment will build on the current dark matter experiment at SURF called the Large Underground Xenon detector, or LUX.
Dark matter, so named because it doesn’t emit or absorb light, leaves clues about its presence via gravity: it affects the orbital velocities of galaxies in clusters and distorts light emitted from background objects in a phenomenon known as gravitational lensing. But direct detection of dark matter has so far been elusive.
Physicists believe dark matter could be made of difficult-to-detect particles called Weakly Interacting Massive Particles or WIMPs, which usually pass through ordinary matter without leaving a trace. The current LUX experiment consists of a one-third ton liquid xenon detector that sits deep underground where it is shielded from cosmic rays and poised to find WIMPs. When one of these particles passes through the xenon detector, it should occasionally produce an observable flash of light.
"When completed, the LZ experiment will be the world’s most sensitive experiment for WIMPs over a large range of WIMP masses," says Harry Nelson, physicist at the University of California, Santa Barbara and current spokesperson of the LZ Collaboration. The international LZ collaboration includes scientists and engineers from 29 institutions in the United States, Portugal, Russia and the United Kingdom.
The next-generation detector, LZ, will consist of a 7-ton liquid xenon target and an active system for suppressing the rate of non-WIMP signals known as background events, both located inside the same water – tank shield used by LUX. This significant increase in detection capability will increase the sensitivity to WIMPs by more than a hundred times.
Another DOE- and NSF-approved project called SuperCDMS-SNOLAB will also be looking for WIMPs, but with a focus on those that are lighter and less energetic than those primarily detectable by the LZ detector. A third project called ADMX-Gen2 is tuned specifically for axions, and will watch for them by monitoring signals stimulated by a strong magnetic field.
"By picking a combination of these WIMP detection techniques that balance the potential sensitivity, the technical readiness, and the cost, the idea is to have the broadest dark-matter detection program possible," says Murdock "Gil" Gilchriese, LZ project scientist and physicist in Berkeley Lab’s Physics Division.
"This is great news in the hunt for dark matter," says Kevin Lesko, senior physicist with LUX/LZ, SURF operations manager and from Berkeley Lab’s Physics Division. "With our new detector at SURF, we plan on getting the experiment up and running by 2018 and will continue searching with LUX in the interim."